

Société Technologique d'Echangeurs Membranaires

JUIN 2024

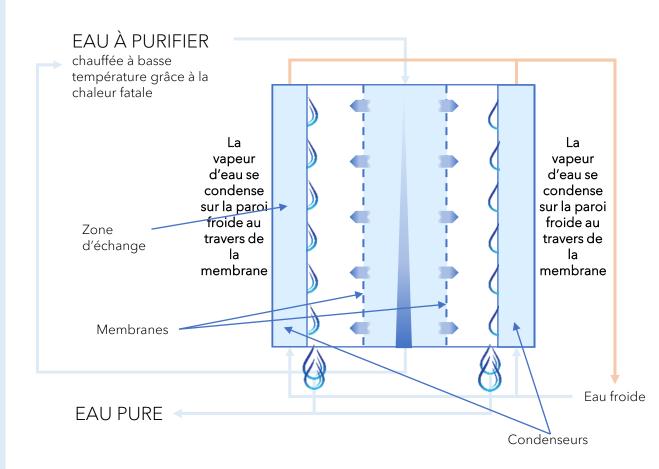
Une Greentech qui bouleverse la course aux économies d'énergie

STEM a conçu 2 innovations technologiques révolutionnaires du **traitement de l'air et de l'eau**.

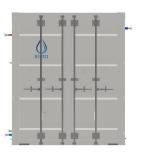
STEM substitue la consommation d'énergie électrique par de la chaleur provenant de sources de **chaleur résiduelle (fatale)**.

Cette dernière est, par définition, gratuite, ce qui permet de réaliser des **économies d'énergie considérables**.

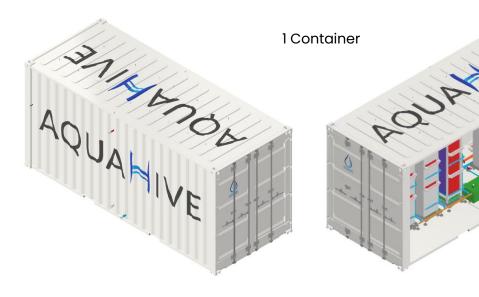
AQUAHIVETraitement de l'eau



LE PRINCIPE TECHNIQUE



EAU



AQUAHIVE

Le produit

Caractéristiques – Ce que c'est

Système de production d'eau pure économe en énergie, optimisé par IA

Avantages – Ce qui le rend unique

- Valorisation de la chaleur basse température
- Valorisation des eaux de faible qualité
- Faibles coûts de maintenance (pas de membrane coûteuse)
- Très faible consommation électrique
- Optimisé par IA

Bénéfices – La valeur qu'il apporte au client

- Des économies d'énergie significatives lors de la purification de l'eau 65 à 90% pour 1m3
- Décarbonation significative 65 à 90 % d'émissions de carbone en moins selon les pays et la source d'énergie précédente
- Économies d'eau en amont et réduction des coûts de traitement en aval
- Optimisation en temps réel pour maximiser les économies
- Maintenance prédictive pour réduire les coûts opérationnels

La valeur

Bénéfices – Ce que le client peut obtenir

Les économies dépendent de la source d'eau traitée. De la chaleur fatale est nécessaire.

AQUAHIVE

MARCHÉ	Eau industrielle	Eau potable	
EAU TRAITÉE	Eau de surface	Déchets liquides/Eau saumâtre/Eau de mer	Eau saumâtre/Eau de mer
TECHNOLOGIE DE RÉFÉRENCE	Osmose Inverse		
ÉCONOMIES D'ÉNERGIE	65 à 75%	70 à 90%	75 à 90%
ÉCONOMIES EN AMONT	-	OUI	OUI
ÉCONOMIES EN AVAL	-	oui	OUI

Les avantages vs. Osmose Inverse

Des avantages décisifs sur l'OPEX

A CAPEX égal, AQUAHIVE apporte sobriété énergétique et polyvalence en valorisant la chaleur fatale environnante

AQUAHIVE

	Osmose Inverse	AQUAHIVE
САРЕХ	800 Eur/m3	=
CONSOMMATION ELECTRIQUE	3,5 à 5 kWh/m3	0,8 kWh/m3
PRE-TRAITEMENT (Chimique)	Estimé à 12% de l'OPEX	Non
MAINTENANCE (Membranes)	Estimé à 10% de l'OPEX	Négligeable
NIVEAU DE PURETÉ DE L'EAU	13 μS	7 μS
TRAITEMENT D'EAU TRÈS CHARGÉE	Difficile	Oui

Business case

Dessalement d'eau de mer

Hypothèses

- Production de 30 m3/jour
- Valorisation de chaleur fatale à 90°C

Technologie de référence : Osmose inverse

	Osmose Inverse	AQUAHIVE
CHALEUR FATALE	-	350 à 600 kWh/m3**
CONSOMMATION ÉLECTRIQUE	8 kWh/m3*	1 kWh/m3
ÉCONOMIES D'ÉNERGIE		87,5%

^{*}Basé sur la littérature (Gopi et al., 2019). L'eau de mer est l'eau la plus énergivore à traiter pour l'osmose inverse

^{**} Dépend des contraintes du site

Business case

Traitement d'eau pour électrolyse avant EDI (Electrodesionisation)

Hypothèses

- Electrolyseur de 5 MW avec un rendement de 65% (100 kg/h H2)
- Valorisation de chaleur fatale du stack à 75°C (1,75 MWh disponible)
- Besoin eau distillée @4 μS/cm

Technologie de référence : 2 passes Osmose inverse

	Osmose Inverse	AQUAHIVE
CHALEUR FATALE	-	350 à 600 kWh/m3
CONSOMMATION ÉLECTRIQUE	6 kWh/m3*	1 kWh/m3
ÉCONOMIES D'ÉNERGIE		83%

^{*} Eau industrielle en entrée

david@stem-tech.fr; frederic@stem-tech.fr